Defect passivation of two-dimensional semiconductors by fixating chemisorbed oxygen molecules via *h*-BN encapsulation

Jin-Woo Jung^{1,*}, Hyeon-Seo Choi¹, Young-Jun Lee¹, Youngjae Kim², Takashi Taniguchi³, Kenji Watanabe⁴, Min-Yeong Choi⁵, Jae Hyuck Jang⁵, Hee-Suk Chung⁵, Dohun Kim¹, Youngwook Kim¹, and Chang-Hee Cho¹

¹Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea

²School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455, South Korea
³International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
⁴Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan
⁵Electron Microscopy and Spectroscopy Team, Korea Basic Science Institute, Daejeon 34133, South Korea

Hexagonal boron nitride (*h*-BN) is a key ingredient for various two-dimensional (2D) van der Waals heterostructure devices, but the exact role of *h*-BN encapsulation in relation to the internal defects of 2D semiconductors remains unclear. Here, we report that *h*-BN encapsulation greatly removes the defect-related gap states by stabilizing the chemisorbed oxygen molecules onto the defects of monolayer WS₂ crystals. Electron energy loss spectroscopy (EELS) combined with theoretical analysis clearly confirms that the oxygen molecules are chemisorbed onto the defects of WS₂ crystals and are fixated by *h*-BN encapsulation, with excluding a possibility of oxygen molecules trapped in bubbles or wrinkles formed at the interface between WS₂ and *h*-BN. Optical spectroscopic studies show that *h*-BN encapsulation processes by two orders of magnitude compared to that of bare WS₂. Furthermore, the valley polarization becomes robust against the various excitation and ambient conditions in the *h*-BN encapsulated WS₂ crystals.

Fig.1. Schematic illustration showing the chemisorbed oxygen molecules on sulfur vacancies in WS_2 crystal, which are anchored by the *h*-BN encapsulation, resulting in the defect passivation in WS_2 crystals, as confirmed by EELS spectroscopy [1].

References

^[1] J. W. Jung et al, Advanced Science 11, 2310197 (2024).

^{*}Email: jin-woo.jung@neel.cnrs.fr