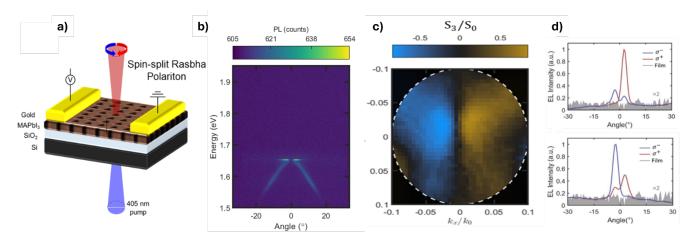
From Optical to Electrical Generation of Spin-Polarized Polaritons in Perovskite Metasurfaces

A. Zacheo^{1,2}, M. Marangi^{1,2}, Y. Wang^{1,2}, G. Adamo^{1,2}, C. Soci^{1,2,3,*}


¹ Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

² Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, Singapore 637371. ³ National Centre for Advanced Integrated Photonics (NCAIP), Nanyang Technological University, Singapore 639798.

The generation and control of spin-polarized ($\sigma = \pm 1$) exciton-polariton quasiparticles and their Bose-Einstein condensate (BEC) state holds strong promise for emerging applications in optics, spintronics, and quantum information. Here we report both optical and electrical generation of spin-polarized exciton-polaritons in a monolithic MAPbI₃ perovskite metasurface integrated into a light-emitting transistor (LET) – Fig. 1a [1].

The metasurface features a square lattice of isosceles triangular holes that support high-Q bound state in the continuum (BIC) resonances, which strongly couple to the perovskite excitons, enabling polariton condensation at threshold excitation fluence (Fig. 1b). The intentionally broken in-plane C_2 symmetry splits the polarization singularity of the Γ -point BICs into two distinct, oppositely circularly polarized states in momentum space [2], yielding a spin purity of 0.8 (Fig. 1c). The Rashba-split polariton LET emission shows momentum-entangled dispersion branches within the same mode, which can be electrically addressed by group velocity selection (Fig. 1d).

Our results demonstrate the feasibility of using polycrystalline perovskite metasurfaces for high-purity, electrically controlled spin-polarized polaritons and condensates - without the need for external magnetic fields or synthetic gauge potentials.

Figure 1: a) Schematic of the perovskite light-emitting *metatransistor* used for optical and electrical generation of spin-polarized exciton polaritons. b) Angle-resolved spectra showing polariton emission near the condensation threshold. c) Circularly polarized photoluminescence map of the normalized S_3 Stokes parameter, showing the spin-split states of the BEC in momentum space. d) Electrical control of spin-polarized polaritons in the light emitting transistor.

Acknowledgment

Research was supported by the Singapore Ministry of Education, (Grant no. MOE-T2EP50222-0015) and by the Singapore's National Research Foundation through the National Centre for Integrated Photonics (Grant no. NRF-MSG-2023-0002).

References

- [1] Y. Wang, G. Adamo, S.T. Ha, J. Tian, C. Soci, Electrically generated exciton polaritons with spin ondemand, Adv. Mat. 37, 2412952 (2025)
- [2] J. Tian, G. Adamo, H. Liu, M. Klein, S. Han, H. Liu, C. Soci, Optical Rashba effect in a monolithic lightemitting perovskite metasurface, Adv. Mater. 34, 2109157 (2022)