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Faraday rotation is a fundamental effect in the magneto-optical response of solids, liquids and gases. Materials 

with a large Verdet constant find applications in optical modulators, sensors and non-reciprocal devices.  

We measure Faraday rotation spectra around the neutral and charged exciton lines in hBN-encapsulated 

monolayers of WSe2 and MoSe2, and bilayers of MoS2 under moderate magnetic fields (� � 1.4 T) [1] (see Fig. 1). 
For WSe2 and MoSe2 monolayers, the plane of polarization rotates by several degrees around exciton lines, resulting 

in a giant Verdet constant of �1.9 
 10�deg T��cm�� and �2.3 
 10�deg T��cm��, respectively. This is the largest 

measured Verdet constant in the visible/near-infrared regime. The giant Faraday rotation is due to the large oscillator 
strength and high g-factor of the excitons in monolayers. In comparison to monolayers, the Verdet constant reverses 

its sign for interlayer excitons in bilayer MoS2 (���~ � 2 
 10�degT��cm��). We deduce the complete in-plane 
complex dielectric tensors of these materials, which is vital for the prediction of Kerr, Faraday and magneto-circular 

dichroism spectra of 2D heterostructures. For our measurements, we used a charge-coupled device-based Faraday 

rotation spectroscopy method for performing temperature-resolved spectroscopy on 2D materials on the 
microscale [2]. This method is about two-to-three orders of magnitude faster than state-of-the-art modulation 

magneto-spectroscopy methods, while providing a similar performance. 

Finally, our results pose a crucial advance in the potential usage of two-dimensional materials in ultrathin optical 
polarization devices.  

 
Figure 1: Schematic drawing depicting how linearly polarized light passes through an atomically thin semiconductor 

under a magnetic field and acquires Faraday rotation and ellipticity. 
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